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Binder & Vanden-Broeck (2005) showed there are no subcritical or critical solutions
satisfying the radiation condition for steady flows past a flat plate. By using a
weakly nonlinear analysis, it is shown that such flows exist for a curved plate. Fully
nonlinear solutions are computed by a boundary integral equation method, and new
nonlinear solutions for supercritical and generalized critical flows past a curved plate
are presented.

1. Introduction
The problem of free-surface flows past different types of disturbances in an open

channel is classical. The disturbances can be (i) a submerged obstacle on the bottom
of the channel (Forbes 1998; Dias & Vanden-Broeck 2002; Binder, Dias & Vanden-
Broeck 2005), (ii) a step in the bottom of the channel (King & Bloor 1987; Binder,
Dias & Vanden-Broeck 2006) and (iii) an obstruction in the free surface, which is
usually a plate. This models flows past surfboards (Vanden-Broeck & Keller 1989;
Binder & Vanden-Broeck 2005), planing hydrofoils (Fridman & Tuck 2006), and sluice
gates (see Budden & Norbury 1977; Vanden-Broeck 1997; Binder & Vanden-Broeck
2005 and the references cited in these papers). In this paper we discuss new solutions
when the obstruction in the free surface is a curved plate.

In all the solutions presented in this paper, the flow is assumed to have constant
velocity U and constant depth H far downstream. We define the Froude number

F =
U

(gH )1/2
. (1.1)

Here g is the acceleration due to gravity. Far upstream the flow can contain a train
of waves or be a uniform stream with constant velocity V and constant depth D. In
the latter case we introduce an additional Froude number

F ∗ =
V

(gD)1/2
. (1.2)

In the case of a single submerged obstacle or a step in the bottom of the channel
four basic flow types have been identified. The first type is a supercritical flow with
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Figure 1. Sketch of the flow past a curved plate.

F =F ∗ > 1. The second is a subcritical flow with F < 1 and a train of waves far
upstream. (Physical solutions satisfying the radiation condition are then obtained
by reversing the direction of the flow.) The third is a critical flow with F > 1 and
F ∗ < 1. The fourth is a generalized critical flow characterized by F > 1 and a train
of waves far upstream. The first three basic flows are classical. The fourth type was
first calculated by Dias & Vanden-Broeck (2002). The generalized critical flows (i.e.
the solutions of the fourth type) lack physical meaning because the waves do not
satisfy the radiation condition which requires that there be no energy coming from
infinity. However Dias & Vanden-Broeck (2004) showed that the radiation condition
can be satisfied by introducing a second obstacle in the channel. The waves can then
be trapped between the two obtacles.

Vanden-Broeck (1997) and Binder & Vanden-Broeck (2005) showed that for a single
flat plate (e.g. a surfboard and a sluice gate) there are solutions of the fourth type but
no solutions of the third type. Furthermore Binder et al. (2005) found that there are
no solutions of the second type: all the subcritical solutions have trains of waves far
upstream and far downstream and do not therefore satisfy the radiation condition.
Dias & Vanden-Broeck (2004) and Binder & Vanden-Broeck (2007) showed that the
waves which do not satisfy the radiation condition in the subcritical solutions and the
solution of the fourth type can be eliminated by introducing a second disturbance in
the channel. The subcritical flows and the flow of the fourth type then become flows
of the second and third type respectively.

In this paper we use a weakly nonlinear theory to show that solutions for subcritical
and critical flows can be constructed without introducing a second disturbance into
the channel, provided the flat plate is replaced by a curved plate. In addition we use
a boundary integral equation method to compute new fully nonlinear solutions for
supercritical and generalized critical flow past a curved plate. These numerical results
are consistent with previous computations by Asavanant & Vanden-Broeck (1994).

The boundary integral equation method and the weakly nonlinear theory are
described in § 2. The results are presented in § 3.

2. Formulation
Consider the steady two-dimensional irrotational flow of an inviscid and

incompressible fluid past a curved plate in an open channel (see figure 1). The
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fluid is bounded from below by the bottom of the channel A′D′ and from above by
the two free surfaces AB and CD and the curved plate BC. A system of Cartesian
coordinates (x∗, y∗) is defined with the x∗-axis along the bottom of the channel and
the y∗-axis passing through the separation point B (x∗ = 0) of the curved plate. The
acceleration due to gravity, g, is acting in the negative y∗ direction. The horizontal
distance from the y∗-axis to the separation point C is denoted by x∗

c . The flow
is assumed to separate tangentially from the curved plate BC. As x → ∞ the flow
approaches a uniform stream with constant velocity U and constant depth H . The
equation of the streamline ABCD is y∗ = H + η∗, where η∗ is the elevation of the free
surface on top of the level H .

Dimensionless quantities (x, y, η, xc) = (x∗, y∗, η∗, x∗
c )/H and (u, v) = (u∗, v∗)/U are

defined by taking H as the reference length and U as the reference velocity. Here,
u∗ and v∗ are the horizontal and vertical components of the velocity. The boundary
integral equation method used to solve the fully nonlinear problem and the weakly
nonlinear theory are described in § § 2.1 and 2.2 respectively.

2.1. Nonlinear boundary integral equation

The numerical procedure follows closely that used in Vanden-Broeck (1997) and
Binder & Vanden-Broeck (2005). The reader is referred to these papers for further
details.

We introduce the complex potential function f and the complex velocity w:

f = φ + iψ, w =
df

dz
= u − iv. (2.1)

Without loss of generality we choose ψ =0 on the free-surface streamline ABCD,
and it follows that ψ = − 1 on the channel bottom streamline A′D′. We choose φ =0
(x = 0) at B and let φ = φc (x = xc) at C. We define the function τ − iθ as

w = u − iv = eτ−iθ (2.2)

and obtain the integral equation

τ (φ) =

∫ ∞

−∞

θ(φ0) eπφ0

eπφ0 − eπφ
dφ0, (2.3)

which relates the values of τ and θ along ψ =0. The integral in (2.3) is a Cauchy
principal value.

On the free surfaces, the dynamic boundary condition gives

e2τ +
2

F 2
y = 1 +

2

F 2
on AB and CD. (2.4)

We prescribe the shape of the curved plate by writing

dy

dx
=

dη

dx
= tan θ = G(η) on BC, (2.5)

where G(η) is given.
Finally we relate the values of x and y on ψ =0 by integrating numerically the

identity

xφ + iyφ =
1

u − iv
= e−τ+iθ (2.6)

and equating real and imaginary parts. This gives a parametric representation x = x(φ),
y = y(φ) for the streamline ψ = 0.
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Equations (2.3)–(2.6) define a nonlinear integro-differential equation for the
unknown function θ(φ) on ABCD. This equation is discretized and the resulting
equations are solved by Newton’s method.

2.2. Weakly nonlinear theory

Several investigators (Shen 1995; Dias & Vanden-Broeck 2002; Binder et al. 2005 and
others) have derived a forced Korteweg–de Vries equation to model the flow past an
obstacle on the bottom of a channel. This weakly nonlinear theory is asymptotically
valid for F close to one and for small disturbances.

Binder & Vanden-Broeck (2005) derived the corresponding weakly nonlinear theory
for flows past a flat plate. They showed that the flow is described on the free surfaces
AB and CD by the (integrated) Korteweg–de Vries equation

η2
x = 6(F − 1)η2 − 3η3 + Cw on AB and CD. (2.7)

Here Cw is a constant. Along the flat plate

ηx = s, (2.8)

where s is the (constant) slope of the flat plate. Exact solutions can then be constructed
in the phase plane ηx versus η. The idea is to combine the trajectories associated with
(2.7) with horizontal jumps corresponding to (2.8).

Here we extend the approach from flat plates to curved plates by replacing (2.8)
by (2.5). The main difference is that the jumps are no longer horizontal in the phase
plane.

We shall consider two choices for the function G(η):

G1(η) = αη + β, G2(η) = ±(4γ η)1/2. (2.9)

Here α, β and γ are given constants.
Equation (2.5) can be integrated to give the shape of the plate. For example

integrating (2.5) with the choice G1 (2.9) yields

η = ceαx − β

α
on BC, (2.10)

where c = η(0) + β/α is a constant of integration. The value of x at C is given by

xc =
1

α
log

[
αη(xc) + β

αη(0) + β

]
=

1

α
log

[
ηx(xc)

ηx(0)

]
. (2.11)

For geometric simplicity we shall require xc > 0 in all the calculations.
Detailed weakly and fully nonlinear solutions are presented in the next section.

3. Results
We shall describe the solutions corresponding to supercritial flows, generalized

critical flows, subcritical flows and critical flows in four separate sections.

3.1. Supercritical flow

In this section we describe supercritical flows with F = F ∗ > 1 corresponding to the
curved plate G1 (2.9). The phase plane (η, ηx) corresponding to (2.7) for a typical
value F = F ∗ = 1.2 is shown in figure 2(b). There is saddle point at (0, 0) and a centre
at (4(F − 1)/3, 0). The inner closed trajectories are periodic waves. The outer closed
trajectory is a homoclinic trajectory describing a solitary wave. It corresponds to the
choice Cw = 0 in (2.7).
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Figure 2. Supercritical flow, F = 1.20. The shape of the curved plate is defined by G1 (2.9).
(a) Weakly nonlinear profile: α = −0.20, β = −0.05, η(0) = 0.36, η(xc) = 0.06 and xc = 3.37.
(b) Weakly nonlinear phase portrait for (a). (c) Weakly nonlinear profile: α = 0.50, β = −0.22,
η(0) = 0.39, η(xc) = 0.16 and xc = 3.45. (d) Weakly nonlinear phase portrait for (c). (e) Nonlinear
profile: α = 0.50, β = −0.25, y(0) = 1.45, y(xc) = 1.18 and xc = 3.85 (φc = 2.80). (f) Nonlinear
phase trajectory for (e).

To construct a weakly nonlinear solution we start at the saddle point in the phase
plane and move along the homoclinic orbit in a clockwise direction. At B where the
upstream free surface separates from the curved plate we move along the straight
line G1 (2.9) until we rejoin the homoclinic orbit at C where the downstream free
surface separates from the curved plate. We then continue along the homoclinic
orbit in the clockwise direction and finish at the saddle point in the phase plane
(figure 2b, d).

The number of independent parameters for a solution is three. They can be taken
as F > 1 which provides the general layout of the phase plane diagram and α and
β which determine where the straight line is in the phase plane. The values of η(0),
ηx(0), η(xc), ηx(xc) and xc must then come as part of the solution.

We present in figure 2(a, c) typical weakly nonlinear profiles. The corresponding
phase plane portraits are shown in figure 2(b, d).
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Figure 3. Generalized critical flow: F = 1.20, α = 0.50 and β = −4/30. The shape of the curved
plate is defined by G1 (2.9). (a) Weakly nonlinear profiles; η(xc) = 0.39. The profile with the
larger waves is for values of xc = 1.04 and η(0) = 0.34. The profile with the smaller waves is
for values of xc = 4.45 and η(0) = 0.28. (b) Weakly nonlinear phase portrait for (a). (c) Weakly
nonlinear profiles; η(xc) = 0.09. The profile with the larger waves is for values of xc = 1.21
and η(0) = 0.17. The profile with the smaller waves is for values of xc = 4.72 and η(0) = 0.25.
(d) Weakly nonlinear phase portrait for (c).

Figure 2(e) is a computed fully nonlinear profile for values of F , α and β similar to
those used in the weakly nonlinear profile of figure 2(c). The number of independent
parameters is three, as suggested by the weakly nonlinear phase plane analysis, but
it is more convenient to choose them as F , α, and φc (which essentially is the same
as choosing xc) in the nonlinear computations. Figure 2(f) is a plot of the nonlinear
phase trajectories dy/dx versus y − 1 for figure 2(e) and provides a check that the
weakly nonlinear analysis in the phase plane is correct in figure 2(d). The agreement
between the nonlinear and weakly nonlinear profiles in figure 2(c,e) is excellent for
similar values of the parameters F , α and β , and it is even better for values of F

closer to 1.

3.2. Generalized critical flow

We now consider generalized critical flows. Then the flow is uniform as x → ∞ with
F > 1 and characterized by a train of waves as x → − ∞. The weakly nonlinear
analysis shows that the solutions depend on four parameters. These parameters are
chosen as F > 1, α, β and xc.

Typical weakly nonlinear profiles together with their phase portraits are shown in
figure 3. Here we start on a periodic orbit in the phase plane and then move to the
homoclinic orbit along a straight line representing the curved plate G1 (2.9). Finally
we move along the homoclinic orbit to the saddle point.

As noted in the introduction the waves in figure 3 do not satisfy the radiation con-
dition for flows from left to right. Dias & Vanden-Broeck (2004), Binder et al. (2005)
and Binder & Vanden-Broeck (2007) showed that solutions satisfying the radiation
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Figure 4. Generalized critical flow: F = 1.3, α = 1, β = −0.4340, xc = 7.065 (φc =5), y(0) =
1.4338, y(xc) = 1.1959 and wave amplitude = 0.002. The shape of the curved plate is defined
by G1 (2.9). (a) Nonlinear profile. (b) Blow-up of the nonlinear phase trajectory for (a) near
the centre.

condition can be obtained by introducing a second disturbance in the flow. An
interesting question is whether or not solutions satisfying the radiation condition can
be obtained without introducing a second disturbance but by choosing appropriately
the shape of the curved plate. For the choice G1 (2.9), figure 3 shows that the
amplitude of the waves decreases as xc increases. In fact these waves can be made
arbitrarily small by taking the limit xc → ∞. This can be shown analytically as follows:
For the waves to disappear, the straight line G1 (2.9) has to pass through the centre.
Therefore ηx(0) = 0, and (2.11) implies that xc is unbounded. The problem with xc = ∞
is that the free surface CD then disappears. We shall show in the next sections that
waveless solutions with xc finite can be constructed by choosing different shapes for
the curved plate.

Shown in figure 4(a) is a computed nonlinear profile for the given values F =1.3,
α = 1, β = −0.4340 and φc = 5. It is qualitatively similar to the weakly nonlinear
profiles shown in figure 3(c). The amplitude of the waves (0.002) is not visible in the
profile of figure 4(a), but it is visible in figure 4(b) which is a blown-up plot of the
nonlinear phase trajectories.

3.3. Subcritical flow

Subcritical flows are characterized by F < 1. The phase plane is sketched in figure 5(b).
There is a centre at (0, 0) and a saddle point at (4(F − 1)/3, 0). We need to combine
the phase portrait with a line representing the plate. There are two cases.

The first case is a line joining the centre to a periodic orbit. This is the case
illustrated in figure 5(b). The second case is a line joining two periodic orbits. There
are then waves both far upstream and far downstream, and the radiation condition
is therefore not satisfied.

In the first case we have a train of waves as x → −∞ and no waves as x → ∞,
provided xc is finite (see figure 5b). A physical solution satisfying the radiation
condition is then obtained by reversing the direction of the flow. For the choice G1

(2.9), the condition ηx(xc) = 0 and the relation (2.11) implies xc = ∞ like in § 3.2. We
now show that finite values of xc can be obtained by using a different choice for G(η),
such as G2 (2.9). We first note that (2.5) implies

xc =

∫ 0

η(0)

dη

G(η)
. (3.1)
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Figure 5. Subcritical flow, F = 0.85. The shape of the curved plate is defined by G2 (2.9).
(a) Weakly nonlinear profile, γ = 0.01, xc = 1.74 and η(0) = 0.03. (b) Weakly nonlinear
phase portrait for (a). (c) Weakly nonlinear profile: γ = −0.01, xc = 1.74 and η(0) = −0.03.
(d) Weakly nonlinear phase portrait for (c). (e) Nonlinear profile: γ = −0.01, xc = 1.75
(φc = 1.75) and y(0) = 0.971. (f) Nonlinear phase trajectory for (e).

The requirement that the line representing the plate go through the centre implies
that G(0) = 0. We satisfy this condition by assuming that

G(η) ≈ |η|δ as η → 0, (3.2)

where δ > 0 is a given constant.
Using the relation (3.2) we find that xc is unbounded when δ � 1 because the integral

in (3.1) is then divergent. Therefore the condition for xc to be finite is δ < 1.
To illustrate this we present in figure 5 results for a plate with shape G2 (2.9). It

follows that (3.2) is satisfied with δ = 0.5 < 1 and

xc = (η(0)/γ ))1/2 (3.3)

is finite. Note that the shape G2 (2.9) has constant curvature ηxx =2γ . As the curvature
goes to 0, the plate becomes a flat horizontal plate.
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Typical weakly nonlinear profiles together with their phase portraits are presented
in figure 5(a)–(d). The number of independent parameters is three, and they can be
taken as F < 1, γ and xc. We note that for fixed values of F and γ , increasing the
value of xc increases the amplitude of the waves.

Shown in figure 5(e, f ) are a computed nonlinear profile and the corresponding
phase trajectory for the same number of independent parameters as for the weakly
nonlinear solutions of figure 5(c, d). There is excellent agreement between the weakly
and fully nonlinear solutions.

Also, the sketch in figure 1 is a computed nonlinear profile for values of F = 0.50,
γ = 0.01 and xc =1.75. It is qualitatively similar to the weakly nonlinear solution of
figure 5(a).

Since potential flows are reversible, the solutions of figures 1 and 5 are physical
solutions satisfying the radiation condition when the direction of the flow is reversed.
This is to be contrasted with the subcritical flows past a flat plate of Binder &
Vanden-Broeck (2005) in which the radiation condition could not be satisfied.

3.4. Waveless solutions and critical flows

We now consider limit cases of the subcritical solutions of figure 5 for which the
waves are eliminated on the free surface AB . Such flows are completely waveless and
can be obtained by extending the line representing the plate in figure 5(a) up to the
homoclinic orbit. Typical resulting weakly nonlinear solutions and their corresponding
phase portraits are shown in figure 6(a–d). We start at the saddle point, move along
the homoclinic orbit and then go to the centre along the line representing the plate.
The solutions depend on two parameters which are chosen as F and γ . Figure 6(e)
is a computed nonlinear solution for the same values of F and γ as in the weakly
nonlinear profile (figure 6c), and figure 6(f) is a plot of the corresponding nonlinear
phase trajectory. Consider now the control volume bounded by the bottom, the free
surfaces, the plate and two cross-sections far upstream and far downstream. Applying
the control volume to continuity and using Bernoulli’s equation leads to the following
exact relations:

F ∗ = F

(
V

U

)3/2

= F

(
D

H

)−3/2

,
D

H
=

F 2

4

(
1 +

√
1 +

8

F 2

)
,

V

U
=

1

2

(√
1 +

8

F 2
− 1

)
. (3.4)

The radiation condition is satisfied in figure 6, since there are no waves on the free
surfaces AB and CD. However for a physically realistic solution the flow direction
needs to be reversed. Applying the control volume to horizontal momentum gives an
exact expression for the horizontal force Fx exerted on the plate (per unit width):

Fx = ρU 2H

[
5

4
− 1

2

√
1 +

8

F 2

(
1 +

F 2

8

)
− 1

2

(
F 2

8
− 1

F 2

)]
, (3.5)

where ρ is the fluid density. The force increases from 0 to ∞ as the Froude number
decreases from 1 to 0. For a flat plate Binder & Vanden-Broeck (2005) showed that
there are no solutions for critical flows that satisfy the radiation condition. Here we
have shown that such solutions exist for a curved plate. Finally let us mention that the
flows in figure 6 (when reversed) can be viewed as particular cases of the generalized
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Figure 6. Waveless flow: F = 0.85. The shape of the curved plate is defined by G2 (2.9).
(a) Weakly nonlinear profile: γ =0.01, xc =3.00 and η(0) = 0.09. (b) Weakly nonlinear
phase portrait for (a). (c) Weakly nonlinear profile: γ = −0.01, xc = 3.46 and η(0) = −0.12.
(d) Weakly nonlinear phase portrait for (c). (e) Nonlinear profile: γ = −0.01, φc = 3.73 (xc =
3.58) and y(0) = 0.871. The exact formula (3.4) gives 0.8082 for the free-surface elevation on
the left, in excellent agreement with the numerical result. (f) Nonlinear phase portrait for (e).

critical flows for which the waves have been eliminated by an appropriate choice of
the shape of the curved plate.

The overall conclusion is that the existence of subcritical and critical flows for
certain types of curved plates is not due to the curvature (both shapes G1 and G2

have non-zero curvature but only G2 can provide these flows) but rather due to the
behaviour G(η) ≈ |η|δ as η → 0 (3.2), with 0<δ < 1. This behaviour implies that
the plate connects horizontally with the free surface at one end. Future work will be
devoted to a deeper underlying physical explanation.
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